Featured Article

Selasa, 31 Mei 2011

KLASIFIKASI JAMUR

Jamur merupakan tumbuhan yang tidak mempunyai klorofil sehingga bersifat heterotrof, tipe sel: sel eukarotik. Jamur ada yang uniseluler dan multiseluler. Tubuhnya terdiri dari benang-benang yang disebut hifa, hifa dapat membentuk anyaman bercabang-cabang yang disebut miselium. Reproduksi jamur, ada yang dengan cara vegetatif ada pula dengan cara generatif.

JAMUR DIBAGI MENJADI 6 DIVISI :

1 MYXOMYCOTINA (Jamur lendir)
• Myxomycotina merupakan jamur yang paling sederhana.
• Mempunyai 2 fase hidup, yaitu:
  
- fase vegetatif (fase lendir) yang dapat bergerak seperti
     
amuba, disebut plasmodium
  
- fase tubuh buah
• Reproduksi : secara vegetatif dengan spora, yaitu spora
  
kembara yang disebut myxoflagelata.
  
Contoh spesies : Physarum polycephalum
2 OOMYCOTINA
• Tubuhnya terdiri atas benang/hifa tidak bersekat, bercabang-cabang dan mengandung banyak inti.
• Reproduksi:
 
- Vegetatif : yang hidup di air dengan zoospora yang hidup di
     
darat dengan sporangium dan konidia.
 
- Generatif : bersatunya gamet jantan dan betina membentuk
     
oospora yang selanjutnya tumbuh menjadi individu baru.
Contoh spesies:
a. Saprolegnia sp. : hidup saprofit pada bangkai ikan, serangga
  
darat maupun serangga air.
b. Phytophora infestans: penyebab penyakit busuk pada kentang.
3 ZYGOMYCOTINA
• Tubuh multiseluler.
• Habitat umumnya di darat sebagai saprofit.
• Hifa tidak bersekat.
• Reproduksi:
  
- Vegetatif: dengan spora.
  
- Generatif: dengan konyugasi hifa (+) dengan hlifa (-) akan
   
menghasilkan zigospora yang nantinya akan tumbuh menjadi
   
individu baru.
Contoh spesies:
a. Mucor mucedo : biasa hidup di kotoran ternak dan roti.
b. Rhizopus oligosporus : jamur tempe.

4 ASCOMYCOTINA
• Tubuh ada yang uniseluler dan ada yang multi se lul er.
• Ascomycotina, multiseluler, hifanya bersekat dan berinti banyak.
• Hidupnya: ada yang parasit, saprofit, ada yang bersimbiosis
  
dengan ganggang membentuk Lichenes (Lumut kerak).
• Reproduksi:
   
- Vegetatif : pada jamur uniseluler membentuk tunas-tunas,
    
pada yang multiseluler membentuk spora dari konidia.
   
- Generatif: Membentuk askus yang menghasilkan askospora.
Contoh spesies:
1. Sacharomyces cerevisae:
     
sehari-hari dikenal sebagai ragi.
   
- berguna untuk membuat bir, roti maupun alkohol.
   
- mampu mengubah glukosa menjadi alkohol dan CO2 dengan
  
   proses fermentasi.
2. Neurospora sitophila:
   
jamur oncom.
3. Peniciliium noJaJum
dan Penicillium chrysogenum
   
penghasil antibiotika penisilin.
4. Penicillium camemberti dan Penicillium roqueforti
   
berguna untuk mengharumkan keju.
5. Aspergillus oryzae
   
untuk membuat sake dan kecap.
6. Aspergillus wentii
   
untuk membuat kecap
7. Aspergillus flavus
   
menghasilkan racun aflatoksin Þ hidup pada biji-bijian. flatoksin salah satu penyebab kanker hati.
8. Claviceps purpurea
  
hidup sebagai parasit padabakal buah Gramineae.
5 BASIDIOMYCOTINA
• Ciri khasnya alat repoduksi generatifnya berupa basidium sebagai
   badan penghasil spora.
• Kebanyalcan anggota spesies berukuran makroskopik.

Contoh spesies:
1. Volvariella volvacea :
   jamur merang, dapat dimakan dan sudah dibudidayakan
2. Auricularia polytricha :
   
jamur kuping, dapat dimakan dan sudah dibudidayakan
3. Exobasidium vexans :
  
parasit pada pohon teh penyebab penyakit cacar daun teh atau
  
blister blight.
4. Amanita muscaria dan Amanita phalloides:
  
jamur beracun, habitat di daerah subtropis
5. Ustilago maydis :
  
jamur api, parasit pada jagung.
6. Puccinia graminis :
   
jamur karat, parasit pada gandum
6. DEUTEROMYCOTIN
Nama lainnya Fungi Imperfecti (jamur tidak sempurna) dinamakan demikian karena pada jamur ini belum diketahui dengan pasti cara pembiakan secara generatif.

Contoh : Jamur Oncom sebelum diketahui pembiakan generatifnya dinamakan Monilia sitophila tetapi setelah diketahui pembiakan generatifnya yang berupa askus namanya diganti menjadi Neurospora sitophila dimasukkan ke dalam Ascomycotina.
Banyak penyakit kulit karena jamur (dermatomikosis) disebabkan oleh jamur dari golongan ini, misalnya :Epidermophyton fluocosum penyebab penyakit kaki atlit, Microsporum sp., Trichophyton sp. penyebab penyakit kurap.
MIKORHIZA
Mikorhiza adalah simbiosis antara jamur dengan tumbuhan tingkat tinggi, jamur yang dari Divisio Zygomycotina, Ascomycotina dan Basidiomycotina.

LICHENES / LIKENES
Likenes adalah simbiosis antara ganggang dengan jamur, ganggangnya berasal dari ganggang hijau atau ganggang biru, jamurnya berasal dari Ascomycotina atau Basidiomycotina. Likenes tergolong tumbuhan pionir/vegetasi perintis karena mampu hidup di tempat-tempat yang ekstrim.

Contoh :
Usnea dasypoga
Parmelia acetabularis

KINEMATIKA

KINEMATIKA adalah Ilmu gerak yang membicarakan gerak suatu benda tanpa memandang gaya yang bekerja pada benda tersebut (massa benda diabaikan). Jadi jarak yang ditempuh benda selama geraknya hanya ditentukan oleh kecepatan v dan atau percepatan a.

Gerak Lurus Beraturan (GLB) adalah gerak lurus pada arah mendatar dengan kocepatan v tetap (percepatan a = 0), sehingga jarakyang ditempuh S hanya ditentukan oleh kecepatan yang tetap dalam waktu tertentu.
Pada umumaya GLB didasari oleh Hukum Newton I ( S F = 0 ).

S = X = v . t ; a = Dv/Dt = dv/dt = 0
v = DS/Dt = ds/dt = tetap

Tanda D (selisih) menyatakan nilai rata-rata.

Tanda d (diferensial) menyatakan nilai sesaat.

Gerak Lurus Berubah Beraturan (GLBB) adalah gerak lurus pada arah mendatar dengan kecepatan v yang berubah setiap saat karena adanya percepatan yang tetap. Dengan kata lain benda yang melakukan gerak dari keadaan diam atau mulai dengan kecepatan awal akan berubah kecepatannya karena ada percepatan (a= +) atau perlambatan (a= -). 
Pada umumnya GLBB didasari oleh Hukum Newton II ( S F = m . a ).
vt = v0 + a.t
vt2 = v02 + 2 a S
S = v0 t + 1/2 a t2
vt = kecepatan sesaat benda
v0 = kecepatan awal benda
S = jarak yang ditempuh benda
f(t) = fungsi dari waktu t

v = ds/dt = f (t)
a = dv/dt = tetap
Syarat : Jika dua benda bergerak dan saling bertemu maka jarak yang ditempuh kedua benda adalah sama

HUKUM NEWTON

HUKUM NEWTON I
HUKUM NEWTON I disebut juga hukum kelembaman (Inersia).
Sifat lembam benda adalah sifat mempertahankan keadaannya, yaitu keadaan tetap diam atau keaduan tetap bergerak beraturan.

DEFINISI HUKUM NEWTON I :
Setiap benda akan tetap bergerak lurus beraturan atau tetap dalam keadaan diam jika tidak ada resultan
gaya (F) yang bekerja pada benda itu, jadi:

S F = 0   a = 0 karena v=0 (diam), atau v= konstan (GLB)


HUKUM NEWTON II
a = F/m
S F = m a
S F = jumlah gaya-gaya pada benda
m = massa benda
a = percepatan benda

Rumus ini sangat penting karena pada hampir semna persoalan gerak {mendatar/translasi (GLBB) dan melingkar (GMB/GMBB)} yang berhubungan dengan percepatan den massa benda dapat diselesaikan dengan rumus tersebut.

HUKUM NEWTON III

DEFINISI HUKUM NEWTON III:

Jika suatu benda mengerjakan gaya pada benda kedua maka benda kedua tersebut mengerjakan juga gaya pada benda pertama, yang besar gayanya = gaya yang diterima tetapi berlawanan arah. Perlu diperhatikan bahwa kedua gaya tersebut harus bekerja pada dua benda yang berlainan.

F aksi = - F reaksi

N dan T1 = aksi reaksi (bekerja pada dua benda)
T2 dan W = bukan aksi reaksi (bekerja pada tiga benda)

Teori asam basa

A. MENURUT ARRHENIUS

Asam ialah senyawa yang dalam larutannya dapat menghasilkan ion H+.

Basa ialah senyawa yang dalam larutannya dapat menghasilkan ion OH-.
Contoh:

1) HCl(aq)    ®  H+(aq) + Cl-(aq)
2) NaOH(aq) ®  Na+(aq) + OH-(aq)


B. MENURUT BRONSTED-LOWRY

Asam ialah proton donor, sedangkan basa adalah proton akseptor.

Contoh:

1) HAc(aq) + H2O(l)   «
     H3O+(aq) + Ac-(aq)
    asam-1    basa-2        asam-2       basa-1

HAc dengan Ac- merupakan pasangan asam-basa konyugasi.
H3O+ dengan H2O merupakan pasangan asam-basa konyugasi.

2) H2O(l) + NH3(aq)   «     NH4+(aq) + OH-(aq)
    asam-1   basa-2          asam-2     basa-1

H2O dengan OH- merupakan pasangan asam-basa konyugasi.
NH4+ dengan NH3 merupakan pasangan asam-basa konyugasi.

Pada contoh di atas terlihat bahwa air dapat bersifat sebagai asam (proton donor) dan sebagai basa (proton akseptor). Zat atau ion atau spesi seperti ini bersifat ampiprotik (amfoter)

Bilangan Oksidasi

Pengertian Bilangan Oksidasi :
Muatan listrik yang seakan-akan dimiliki oleh unsur dalam suatu senyawa atau ion.
HARGA BILANGAN OKSIDASI
1.
Unsur bebas Bialngan Oksidasi = 0

2.
Oksigen

Dalam Senyawa Bilangan Oksidasi = -2
kecuali

a. Dalam peroksida, Bilangan Oksidasi = -1
b. Dalam superoksida, Bilangan Oksida = -1/2
c. Dalam OF2, Bilangan Oksidasi = +2


3.
Hidrogen
Dalam senyawa, Bilangan Oksidasi = +1

Kecuali dalam hibrida = -1


4.
Unsur-unsur Golongan IA
Dalam Senyawa, Bilangan Oksidasi = +2

5.
Unsur-unsur Golongan IIA
Dalam senyawa, Bilangan Oksidasi = +2

6.
å Bilangan Oksidasi molekul = 0

7.
å Bilangan Oksidasi ion = muatan ion

8.
Unsur halogen

F : 0, -1
Cl : 0, -1, +1, +3, +5, +7
Br : 0, -1, +1, +5, +7
I : 0, -1, +1, +5, +7

OKSIDASI REDUKSI

OKSIDASI REDUKSI
Klasik


Oksidasi

Reaksi antara suatu zat dengan oksigen

Reduksi
Reaksi antara suatu zat dengan hidrogen


Modern
Oksidasi


- Kenaikan Bilangan Oksidasi
- Pelepasan Elektron

Reduksi

- Penurunan Bilangan Oksidasi
- Penangkapan Elektron


Oksidator

- Mengalami Reduksi
- Mengalami Penurunan Bilangan Oksidasi
- Memapu mengoksidasi
- Dapat menangkap elektron


Reduktor

- Mengalami oksidasi
- Mengalami kenaikan Bilangan Oksidasi
- Mampu mereduksi
- Dapat memberikan elektron


Auto Redoks

- Reaksi redoks di mana sebuah zat mengalami
reduksi sekaligus oksidasi

Alkuna

Alkuna merupakan deret senyawa hidrokarbon tidak jenuh yang dalam tiap molekulnya mengandung satu ikatan rangkap 3 diantara dua atom C yang berurutan. Untuk membentuk ikatan rangkap 3 atau 3 ikatan kovalen diperlukan 6 elektron, sehingga tinggal satu elektron pada tiap-tiap atom C tersisa untuk mengikat atom H. Jumlah atom H, yang dapat diikat berkurang dua, maka rumus umumnya menjadi
CnH2n+2 - 4H = CnH2n-2
Seperti halnya alkena, alkuna juga mempunyai suku pertama dengan harga n = 2, sehingga rumus molekulnya C2H2, sedang rumus strukturnya H - C º C - H. Senyawa alkuna tersebut mempunyai nama etuna atau dengan nama lazim asetilena. Asetilena merupakan suatu gas yang dihasilkan dari reaksi karbon dengan air dan banyak digunakan oleh tukang las untuk menyambung besi.
CaC2 (s) + 2 H20 (l) ® C2H2 (g) + Ca(OH)2 (aq)
karbida asetilena

 
Tata nama alkuna sama dengan alkana atau alkena, bagian pertama menunjuk pada jumlah sedang bagian kedua adalah akhiran -una, tetapi suku pertamanya juga mempunyai n = 2 seperti alkena. Etuna merupakan suku alkuna satu-satunya yang dapat dibuat. Suku-suku alkuna lain sering diberi nama atau dianggap sebagai turunan etuna. Jadi propuna disebut metil asetilena.
Seperti pada alkana, suku-suku rendah pada alkena dan alkuna pun hanya mempunyai satu rumus struktur, tetapi pada suku ketiga (jangan lupa harga n-nya 4) dapat kita tuliskan lebih dari satu rumus struktur yaitu ,
pada alkena
1-butena

CH2=CH-CH2-CH3
2-butena

CH3-CH=CH-CH3
2-metil-1-propena CH2=C-CH3
|
CH3
pada alkuna
CH3ºC-CH2-CH3
1-butuna
CH3-CºC-CH3 2-butuna
Jadi peristiwa isomeri terjadi pula pada alkena dan alkuna, bahkan penyebabnya dua. Kalau pada alkana hanya pada rantainya berbeda (disebut isomeri rantai), pada alkena dan alkuna dapat pula disebabkan ikatan rangkapnya berpindah tempat (disebut isomeri posisi) karena itu letak ikatan rangkap pada suku-suku alkena dan alkuna yang lebih tinggi selalu diberi nomor seperti terlihat di atas.

Alkena

Alkena tergolong hidrokarbon tidak jenuh yang mengandung satu ikatan rangkap dua antara dua atom C yang berurutan. Jadi rumus umumnya mempunyai 2 atom H lebih sedikit dari alkana karena itu rumus umumnya menjadi CnH2n+2-2H = CnH2n. Kekurangan jumlah atom H pada alkena dibandingkan dengan jumlah atom H pada alkana dapat dijelaskan sebagai berikut. Perhatikan untuk n = 2, pada alkana adalah C2H6 sedang pada alkena adalah C2H4, bagaimana dapat digambarkan rumus strukturnya? Perhatikan contoh berikut!

HHHH
||||
H - C - C - H berubah menjadi H - C = C - H
||
HH

Kedua atom H di bawah harus dibebaskan supaya elektron-elektron atom C yang tadinya dipakai untuk membentuk ikatan kovalen dengan atom H dapat dialihkan untuk membentuk ikatan kovalen dengan sesama atom karbon. Alkena mengandung satu ikatan rangkap dua antara dua atom C, maka suku pertama alkena harus mengandung dua atom C. Jadi n = 2, dan beberapa suku lain dapat Anda lihat pada tabel berikut ini.

Lima suku pertama alkena
Suku ke n rumus struktur nama
1
2
3
4
5
2
3
4
5
6
CH2 = CH2
CH2 = CH - CH3
CH2 = CH - CH2 - CH3
CH2 = CH - CH2 - CH2 - CH3
CH2 = CH - CH2 - CH2 -CH2 - CH3
etena
propena
1-butena
1-pentena
1-heksena

Nama alkena berbeda dengan alkana hanya pada bagian belakang, jadi bagian yang menunjuk pada jumlah tidak berubah. Bagaimana memberi nama alkena yang bercabang? Secara garis, besar tidak berbeda dengan cara memberi nama alkana yang bercabang, tetapi pada penentuan rantai induk yang terpanjang harus rantai yang mengandung ikatan rangkap. Jadi ikatan rangkapnya diutamakan dengan nomor terkecil. Sebagai contoh lihatlah rumus struktur berikut ini.
HHHH
||||
1C = C2 - C3 - C4 - H      3-metil-1-butena (bukan 2-metil-3-butena)
|||
HCH3H

Pada alkana tidak ada bagian dari rumus strukturnya yang mempunyai ciri khas, sebaliknya pada alkena ada bagian dari rumus strukturnya yang mengandung satu ikatan rangkap dua. Bagian ini (-C=C-) disebut gugus fungsional.
Suku alkena yang banya dikenal adalah etena (etilena) dan propena (propilena) yang merupakan bahan dasar untuk membuat plastik polietena (politena) dan polipropilen.

Alkana

Alkana
Hidrokarbon jenuh yang paling sederhana merupakan suatu deret senyawa yang memenuhi rumus umum CnH2n+2 yang dinamakan alkana atau parafin. Suku perfama sampai dengan 10 senyawa alkana dapat anda peroleh dengan mensubstitusikan harga n dan tertulis dalam tabel berikut.

Suku pertama sampai dengan 10 senyawa alkana
Suku ke n rumus molekul nama titik didih
(°C/1 atm)
massa 1 mol dalam g
1 1 CH4 metana -161 16
2 2 C2H6 etana -89 30
3 3 C3H8 propana -44 44
4 4 C4H10 butana -0.5 58
5 5 C5H12 pentana 36 72
6 6 C6H14 heksana 68 86
7 7 C7H16 heptana 98 100
8 8 C8H18 oktana 125 114
9 9 C9H20 nonana 151 128
10 10 C10H22 dekana 174 142
Selisih antara suku satu dan suku berikutnya selalu sama, yaitu -CH2 atau 14 satuan massa atom, sehingga seperti suatu deret dan disebut deret homolog (deret sepancaran). Ternyata banyak senyawa-senyawa karbon yang merupakan deret seperti alkana seperti yang akan kita pelajari nanti. Bagaimana kita dapat memberi nama pada suku-suku alkana, untuk itu perhatikan nama setiap suku itu dan nama umum. Umpamanya, metana dan alkana apanya y yang sama? Akhiran -ana, jadi alk- diganti dengan met- untuk suku pertama, suku kedua dengan et-, suku ketiga dengan prop-, suku keempat dengan but-, mulai suku kelima dan seterusnya diberi awalan angka-angka Latin; pent- untuk 5, heks- untuk 6, hept- untuk 7, okt- untuk 8, non- untuk 9, dan dek- untuk 10. Hasil penamaan sudah dapat anda lihat pada tabel di atas. Anda harus betul-betul menguasai nama-nama dari kesepuluh alkana yang sederhana ini karena akan merupakan dasar bagi penamaan senyawa-senyawa karbon lainnya.
Alkana-alkana penting sebagai bahan bakar dan sebagai bahan mentah untuk mensintesis senyawa-senyawa karbon lainnya. Alkana banyak terdapat dalam minyak bumi, dan dapat dipisahkan menjadi bagian-bagiannya dengan distilasi bertingkat. Suku pertama sampai dengan keempat senyawa alkana berwujud gas pada temperatur kamar. Metana biasa disebut juga gas alam yang banyak digunakan sebagai bahan bakar rumah tangga/industri. Gas propana, dapat dicairkan pada tekanan tinggi dan digunakan pula sebagai bahan bakar yang disebut LPG (liquified petroleum gas). LPG dijual dalam tangki-tangki baja dan diedarkan ke rumah-rumah. Gas butana lebih mudah mencair daripada propana dan digunakan sebagai "geretan" rokok. Oktana mempunyai titik didih yang tempatnya berada dalam lingkungan bahan bakar motor. Alkana-alkana yang bersuhu tinggi terdapat dalam kerosin (minyak tanah), bahan bakar diesel, bahan pelumas, dan parafin yang banyak digunakan untuk membuat lilin.
Bagaimana sifat-sifat senyawa karbon yang termasuk dalam satu deret homolog? Perhatikan tabel di atas di mana terdapat salah satu sifat, yaitu titik didih. Titik didih semakin tinggi jika massa molekul relatifnya makin besar. Hal ini berarti wujudnya akan berubah pada suhu kamar dari gas ke cair kemudian padat. Kecenderungan sifat apa lagi yang dapat anda ramalkan?
Dalam kimia karbon adalah panting bagi kita untuk dapat menuliskan rumus molekul dan rumus struktur. Rumus molekul menyatakan banyaknya atom setiap unsur yang ada dalam suatu molekul. Sedangkan rumus struktur menggambarkan bagaimana atom-atom itu terikat satu sama lain. Karena atom karbon merupakan tulang punggung dari semua senyawa karbon, maka kita harus mampu menggambarkan rangka karbon dalam suatu molekul senyawa karbon. Setiap atom karbon dikelilingi secara tetrahedral oleh atom-atom terikat dalam gambaran tiga dimensi, tetapi biasanya molekul-molekul senyawa karbon cukup digambarkan dengan gambaran dua dimensi saja.
H
|
H - C - H
|
H
           rumus struktur metana (gambar 2 dimensi)

Nama Formula (rumus) Formula struktural
metana CH4 H
|
H - C - H
|
H
etana C2H6 HH
||
H - C - C - H
||
HH
propana C3H8 HHH
|||
H - C - C - C - H
|||
HHH
butana C4H10 HHHH
||||
H - C - C - C - C - H
||||
HHHH
Sifat alkana sebenarnya berhubungan dengan rantai struktural molekulnya. Bila rantai karbon panjang atau bercabang, maka setelah anda buat rangka atom karbonnya tinggal membubuhkan atom-atom hidrogen pada ikatan atom karbon yang masih kosong.

contoh : molekul butana


||||
- C - C - C - C -
||||

            sekarang anda tinggal membubuhkan atom-atom hidrogennya
HHHH
||||
H - C - C - C - C - H
||||
HHHH

Kalau anda membuat molekul butana dengan molymod, terlihat bahwa rantai karbonnya tidak benar-benar lurus seperti rumus strukturnya, karena atom karbon tetrahedral mencegah gambaran rantai karbon lurus. Kebanyakan yang kita tuliskan adalah rumus struktur yang lebih sederhana lagi yaitu:
CH3 - CH2 - CH2 - CH3 atau CH3CH2CH2CH3
Jadi asal terbaca rantai karbonnya, itulah yang akan kita gunakan selanjutnya asal selalu ingat bahwa sesungguhnya adalah gambaran ruang.

Popular Posts

Blog Archive